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A conjugate gradient method for solving a 3-D Poisson equation in Cartesian unequally 
spaced coordinates is tested in concurrence to standard iterative methods. It is found that the 
tested algorithm is far superior to Red-Black-SOR with optimal parameter. In the conjugate 

gradient method no relaxation parameter is needed, and there are no restrictions on the num- 
ber of gridpoints in the three directions. The iteration routine is vectorizable to a large extent 
by the compiler of a CYBER 205 without any special preparations. Utilizing some special 
features of vector computers it is completely vectorizable with only minor changes in the 
code. 7 : 1987 Academic Press, Inc 

1. INTRODUCTION 

Many numerical models in fluid dynamics require the solution of a Helmholtz 
equation for pressure p, 

Ap+C.Vp=F (1) 

where C and F are space-dependent vector and scalar functions defined by the 
specific problem. The discrete forms of the first and second derivatives with respect 
to coordinate x appearing in the operators of Eq. (1) are 

8P h?P;+, -(hf-hf+,)P,-hf+,P;~l -= 
ax hh+l(~i+~,+l) ’ 

(2) 

8% xk pi+, -(h;+hi+t)Pi+hj+lPj~I] 
i= ax Mi, I(h, + hi+ 1) 

9 (3) 

where hi is the distance in x direction between pipI and pi. Both derivatives are 
defined at the same point as p,. Using Eqs. (2) and (3) and similar expressions for y 
and z Eq. (1) leads to a system of linear equations: 

AP, =fd 
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(4) 
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with the Nx N coefticient matrix A. pd and fd are the discrete representations of p 
and F. For three-dimensional problems, N may become very large (N lo4 - 105). 

Numerical mathematics offers a variety of algorithms to solve Eq. (4). 
Elimination techniques are not suitable for the range of N expected for three-dimen- 
sional problems. Very efficient direct solvers utilize fast Fourier transform (FFT). 
This restricts the number of gridpoints to powers of 2 (see Wilhelmson and 
Ericksen [23]). Another class of methods are iterative techniques, see for instance 
the fundamental textbooks of Varga [22], Young [24], Ames [l], or Golub and 
van Loan [ 111. The conjugate gradient technique was first seen as a generalization 
of elimination techniques since it has the property of finite termination after N steps 
(Hesteness and Stiefel [ 131). So, for instance, Gaussian elimination is a special con- 
jugate gradient technique prescribing the unit vectors in RN as direction vectors for 
a new step. In recent years, a revival of the conjugate gradient technique as an 
iterative scheme has taken place since by appropriate preconditioning of the matrix 
the residual may be forced to small values in the very first steps. Nevertheless, dis- 
regarding rounding errors the algorithm is still finite. For conjugate gradient techni- 
ques see for instance Daniel [S], Reid [18], Concus, Golub, and O’Leary [7], 
Kershaw [15], Axelsson [2], Young and Jea [25], Khosla and Rubin [16]. 
For preconditioning see, for example, DuPont, Kendall and Rachford [9], 
Meijerink and van der Vorst [ 171, Gustafsson [ 123, Glowinski, Periaux, and 
Pironneau [lo], van der Vorst [21], Behie and Vinsome [6], Behie, Collin, and 
Forsyth, Jr. [3]. Some comparisons have been performed with multigrid techniques 
(Behie and Forsyth [4, 51) and with direct solvers (Taylor, Hirsh, and 
Nadworny [20]) which show very promising results. 

In the following sections the algorithms are presented and their different 
behaviour when applied to a model problem is shown. In the Appendix a method is 
described which permits acceleration of the code on vector computers like the 
CDC CYBER 205. 

2. ALGORITHMS 

One step linear iterative methods for the solution of the general problem 

Bx=f (5) 

can be written as 

x’“+“=Gx’“‘+k, n = 0, 1, 2 ,...) (6) 

with arbitrary x . (‘I An equivalent formulation uses a nonsingular splitting matrix Q, 

X(n+I)=X(n)-Q-‘(Bx’“‘-f) 

= X(n) _ Q-l,.(n) 
(7) 
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with the residual 

r(n) = B-J”‘-f, (8) 

Q is connected with G and k by 

G=I-Q--‘B, 

k=Q--‘f 
(9) 

Different iterative schemes result from different choices of Q. Equation (6) shows 
that for G = 0 the solution is obtained in one step. By Eq. (9) this is equivalent to 
Q = B. So, efficient iterative schemes are obtained by choosing Q similar to B but 
easily invertible. 

2.1. Gauss-Seidel (GS) 

Here, B is decomposed into lower triangular matrix B,, diagonal matrix D and 
upper triangular matrix B,. Both triangular matrices have zero diagonal elements. 

B=B,+D+B,. (10) 

Taking 

Q=D+BL (11) 

results in the iterative formula 

xcnfl’= -(D+ BL) -’ B”x(“)+ (D+ BJ’J (12) 

2.2. Successive-Over-Relaxation (SOR) 

GS is generalized to SOR by introducing a relaxation parameter w which weights 
the diagonal. From the decomposition of B, 

B=c+B,- 
1-W 
-D+BB,, 

w W 

Q is chosen to be 

Q=$+B, 

(13) 

(14) 

leading to the SOR iteration formula 

The parameter w can be chosen to speed up convergence. Often, o must be 
adjusted empirically. 
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2.3. Red-BlackSOR (RBSOR) 

Both GS and SOR are not vectorizable directly. A vectorizable version of SOR is 
found by partitioning the whole field into red and black points similar to a checker- 
board. Red points are surrounded (in normal direction) purely by black points and 
vice versa. Applying Eq. (15) first on all red points and afterwards on all black 
points, a fully vectorizable algorithm is obtained referred to as RBSOR. 

2.4. Idealized Generalized Conjugate Gradient (IGCG) 

Details of the theory for this method may be taken from Young and Jea [25] or 
from Kapitza and Eppel [ 141. Here only the basic algorithm and its specific 
formulation will be given. 

For a given symmetric and positive definite matrix Y the ORTHOMIN(s) 
version of IGCG can be written as 

,p + 1) = .J”) + ;1, p’“‘, 

( y(p), Q - ‘BP@)) 
‘“=(yQ-‘BP’“‘, Q-‘BP’“‘)’ 

=Q-‘(f-B+‘), 

P 3 ‘0) = (Yj’O) 
(16) 

p’“=6’“‘+ c cI,,,,P,p”~-i), 
r=l 

c1 ,=-(YQ-lBh”‘J, Q-‘BP”‘) 
n,* (yQ-lBp’i) ~-l~~‘i))’ 7 

where (a, b) is the dot product of vectors a and 6, and s is the number of old direc- 
tion vectors p used to determine the new one (1 d s 6 n). As splitting matrix Q an 
incomplete Crout factorization is chosen 

Q=L,U,=B+E, (17) 

where L, and U, are a lower triangular matrix with unit diagonal and an upper 
triangular matrix with diagonal D, respectively. Incomplete factorization retains the 
sparse structure of B by explicitly setting all elements of L, and U, to zero which 
are also zero in B. So multiplying L, with U,, does not only give B but some 
additional error matrix E. 

The matrix Y is chosen in a way to simplify the inner products in Eqs. (16) 

Y= U;D-‘U, (18) 
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where the superscript T denotes transposition. So we can now formulate the special 
form of the IGCG-method, 

x(“+ 1) =x(“) + Anp’“), 

(U,P’, DPL;‘Bp’“‘) 
A= (p~,l~p, q&q’ 

(y,#“’ = (J,p- ‘) - ;1 n-lL;lBp(n-l), 

P > (0) = (j(O) 

P (k3’“l+j~l c(,,,~;p(“-‘), 

(D-‘L;W’“‘, L;‘Bpq 
c%=- (pL;lBp”‘, ,Il,pu’)’ 

(19) 

3. MODEL PROBLEM 

To compare the behaviour of the different methods for a fixed C (see below) a 
Gaussian distribution with tunable amplitude, peak location, and variances, 

p = A exp[ - a(x - x0)* - b( y - JJ,)~ - c(z - zo)*] (20) 

is chosen as analytical solution and inserted into Eq. (1) to determine the function 
F. The domain is taken to be [0, lo] x [0, lo] x [0, 1) to reflect the relative 
geometrical scale in further applications. The grid was chosen equidistant in x and 
y direction, but with a variable gridspacing in z direction to allow for a higher 
resolution in the boundary layer. Three different vertical grids are used with 10, 20, 
and 26 points, respectively. They are depicted in Fig. 1 together with the 
corresponding x scale. 

DXIKZ=lOl UXIKZ-201 DXIKZ-261 

FIG. 1. Three vertical grid resolutions (10, 20, and 26 levels) together with the horizontal resolution 
DA’ (length of abscissa). 
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Boundary conditions are prescribed either as Dirichlet type or Neumann type. 
Two cases are considered here: 

(a) Neumann at z = 0, Dirichlet elsewhere: This case simulates an application 
in atmospheric modeling, where the departure of pressure from its hydrostatic value 
must be computed assuming this departure being small (or in fact zero) far outside 
the central part of the domain. 

(b) Dirichlet at z = 1, Neumann elsewhere: This case is used to test the 
behaviour of the algorithm when confronted with many Neumann conditions. The 
code is constructed such that at least one boundary must be of Dirichlet type. 

The parameters in Eq. (20) were chosen such that the peak was not too sharp to 
be properly resolved by the grid: 

A = 1, 

a=b=O.Ol, c=O.l, (21) 

x()=y()=5, zo = 0.5. 

With a view to atmospheric application where the solution domain is chosen such 
that the lowest z coordinate plane coincides with the ground, the vector C in 
Eq. (1) may be estimated to have values of order 0.01 so that asymmetries entering 
by these gradient terms are considerably smaller than asymmetries caused by 
unequally spaced z-gridlines. So C was kept constant, 

c = (0.01, 0.01,0.01). (22) 

There are two different choices of initial values taken: The first starts from zero, the 
second from 0.99 xx, (solution). The latter one is more adequate for real 
applications, since there the result of the last time step would be used as initial 
guess, which should not differ very much from the result. Convergence is assumed 
when the normalized residual E falls below some prescribed value, in this case 

II rcn’ II E=j-pj< 10-6, 

where 

/I x II = &a (24) 

is the Euclidean norm. 
From Eqs. (19) follows that s previous direction vectors p(j) are necessary to 

estimate a new p’“‘. Some experiments were made with varying s. Table I shows the 
number of iterations and work units (definition see below) for the 20 x 20 x 20 
domain case (a). It is seen that s = 1 gives the minimum number of iterations and 
work units. So, for all computations s is set to 1, i.e., only one old direction vector 
must be stored. 
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TABLE I 

Number of Old Direction Vectors S, Number of Iterations N,,, 
and Work Units WU for a 20 x 20 x 20 Domain with Initial 

Guess x(“) = 0 and Boundary Type (a) 

s N,, wu 

1 14 325 
2 26 658 
3 21 588 
4 19 578 
5 19 620 
6 19 659 
I 19 695 
8 20 771 

4. RESULTS 

Figure 2 shows the behaviour of GS, RBSOR, and IGCG when applied to a 
20 x 20 x 20 domain for cases (a) and (b). E is taken as ordinate, while the abscissa 
is in work units, which are defined as the number of floating point multiplications 
and divisions per unknown, for clearness divided by 1000. Initial value was 0.99 x x,~ 
(solution). 

Both Figs. 2a and b show the rapid convergence of GS in the first few iterations 
followed by a plateau-like behaviour. This is due to the rapid smoothing of high fre- 
quencies of the residual, while the low frequencies are treated very poorly (see 
Stuben and Trottenberg [ 191). 

RBSOR with optimally chosen parameter shows considerably better results. The 
convergence criterion is fulfilled within the admitted range of work units. But, as 
can be seen on the graph, the residual is not guaranteed to get smaller in every 
iteration step. The curve shows some sort of oscillation. 

IGCG, now, beats RBSOR by a factor of about 10. There is no oscillation 
because it may be shown that the residual must always get smaller (see Young and 
Jea [25]). The difference between cases (a) and (b) is about 10 % for RBSOR and 
none for IGCG. 

All other problems solved with the three methods show similar results, therefore 
they are not displayed as a graph but sampled in Table II (excluding GS since con- 
vergence never happened). As seen from Table II in nearly all cases IGCG is faster 
than RBSOR by a factor of at least 10. Looking for a functional relation of the 
form 

Work -N”. (25) 
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CONVERGENCE-TESTS 
DIMENSIONS: 20 x 20 x 20 EIOUNORRY-TYPE: 000010 

0ISCA:TYPE: I FIRST GUESS: X0 - 0.99 SOL. 

WORK UNITS 

CONVERGENCE-TESTS 
DIflENSIONS: 20 x 20 x 20 BOUNDRRY-TYPE: 111110 

0ISCR:TYPE: I FIRST GUESS: X0 - 0.99 SOL. 
D 
n; 

b 
LEGEND 

0 GS 
d pBzgR. 

IGCG 

0 
7 I 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 
WORK UNITS 

FIG. 2. Normalized residual E as fuction of work for cases (a) and (b). 
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TABLE II 

Relaxation Parameter w, Number of Iterations N,, and Work Units WU of RBSOR and IGCG for 
Cases (a) and (b), for Different Domains and Different First Guesses .x(“) 

RBSOR IGCG 

Domain Case p w NI, WU N,, wu 

10x10x10 
10x10x10 
20X20X20 
20X20X20 
20X20X20 
20X20X20 
26X26X26 
30x30~20 

0. 1.89 120 1807 8 191 
0. 1.89 176 2647 8 191 
0. 1.94 274 4117 14 325 
0. 1.94 308 4627 14 325 

0.99x, 1.94 176 2647 9 216 
0.99x, 1.94 194 2911 8 194 

0. 1.95 346 5197 18 414 
0. 1.95 276 4147 20 457 

where N is the number of unknowns, we may derive from Table II, 

aRBSOR = 1.33% 

aIGCG z 1.22. 

This is to be compared to the analytically derivable numbers for SOR and GS 

aGS z 2.00, 

aSOR z 1.50 

(see, e.g., Ames [ 1 ] ), 

5. CONCLUSIONS 

It is shown that IGCG is about 10 times faster than RBSOR. Moreover, IGCG 
does not contain a relaxation parameter like RBSOR. Figure 3 shows that o has to 
be known to at least two and preferably three digits to guarantee optimum perfor- 
mance of RBSOR, a knowledge which may be difficult to obtain in real 
applications. Another advantage of IGCG is its independence on specific dimension 
configurations for optimal performance contrary to FFT and multigrid. 

Multigrid is reported to be optimal in the sense that a z 1 in Eq. (25), at least in 
2-D cases (Stiiben and Trottenberg [19]). We did not make any tests with 
multigrid solvers, but Behie and Forsyth [4, 53 reported that conjugate 
gradient methods are competitive up to dimensions of about 33 x 33 x 33. Another 
advantage is perhaps the rather simple coding compared to multigrid codes. 

In summary IGCG, apart from its superior speed, has several advantages com- 
pared to standard algorithms. It might be less efficient than the fastest Poisson 
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SENSITIVITY-TESI 

483 

00 

FIG. 3. Number of iterations for RBSOR as function of relaxation parameter o. 

solvers available, but it is easy to apply and offers the user any freedom in defining 
his domain. 

The algorithm is coded for Cartesian coordinates and, with regard to atmospheric 
application, also for terrain-following coordinates, both in 2- or 3-dimensional ver- 
sions. Remarks on possible improvements of the code for vector computers are 
described in the appendix for special domain configurations. 

APPENDIX: SOME REMARKS ON VECTORIZABILITY ON A CYBER 205 

The code has been implemented on the CDC CYBER 205 at the Klimarechen- 
zentrum (= climate computing center) in Hamburg. Each iterative sweep 
(Eqs. (19)) consists of 

(a) multiplication of constants with vectors and adding the result to vectors, 
(b) multiplication of matrices with vectors, 
(c) scalar products of vectors, 
(d) inverting of triangular matrices. 

The only operation not auto-vectorizable by the compiler is (d). But a simple 
idea leads to considerable improvement of the performance of the whole code: 

The triangular matrices L and U are the result of the incomplete factorization of 
B. The points in the vector x are ordered such that in the matrix B the largest 
elements are concentrated near the main diagonal. So, it is tempting to perform the 
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incomplete factorization for the tridiagonal part of B only. This leads to triangular 
matrices L and U which have only one side band. Since this “truncated” form of L 
and U is a worse factorization than the original one, it is expected that the iteration 
count will increase. But this is more than compensated by the ability of the 
CYBER 205 to handle recursive operations with a lag of 1 by “STACKLIB- 
Routines.” This procedure improved the performance by a factor of 2 for our test 
problem. However, it must be emphasized that this trick works only successfully if 
one direction of the 3-D domain has a much smaller space increment than the other 
ones (e.g., the z direction for atmospheric models should have this property) and if 
at the same time the points of the domain are ordered running fastest into this 
direction. This idea should be applicable to other vector machines. The documented 
FORTRAN program code is available from the authors. 
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